Course Syllabus

Syllabus:

- **Lesson One: What is Network Science?**
 - What is (not) network science?
 - The main premise of network science
 - History and relation to graph theory, physics, sociology, and other disciplines
 - Examples of networks from different application domains

- **Lesson Two: Relevant Concepts From Graph Theory**
 - Undirected, directed, signed, weighted and spatial networks
 - Paths, connected components, random walks, etc
 - Directed Acyclic Graphs
 - Bipartite graphs
 - Max-flow/min-cut

- **Lesson Three: Degree Distribution and ER Graphs**
 - Degree distribution
 - Friendship paradox
 - ER graphs and their degree distribution
 - Giant component size in ER graphs
 - Assortative vs disassortative networks

- **Lesson Four: Random vs. Real Graphs and "Scale Free" Networks**
 - The degree distribution of real-world networks
 - Power-law degree distributions
 - Preferential attachment model
 - How to detect a power-law and estimate the exponent
 - Configuration model and degree-preserving randomization
• **Lesson Five: Network Paths, Clustering and The “Small World” Property**
 - Clustering and transitivity in networks
 - Diameter and characteristic path length
 - Small-world networks and the Watts-Strogatz model
 - Network motifs

• **Lesson Six: Centrality and Network-core Metrics and Algorithms**
 - Link-based centrality metrics
 - Path-based centrality metrics
 - k-core decomposition
 - Core-periphery structure
 - Rich-club set of nodes

• **Lesson Seven: Community Detection and Hierarchical Modularity**
 - Hierarchical clustering in networks
 - Modularity metric
 - Algorithms for modularity maximization
 - Limitations of modularity
 - Hierarchical modularity

• **Lesson Eight: Advanced Topics in Community Detection**
 - Overlapping communities
 - Dynamic communities
 - Comparing community structures
 - The role of nodes within and between communities
 - Applications of community detection

• **Lesson Nine: Network Contagion and Epidemics**
 - Epidemics on networks
 - Epidemic modeling (SI, SIS, SIR, etc) under homogeneous mixing
 - Epidemic modeling under arbitrary degree distributions
 - Basic reproductive number and superspreaders

• **Lesson Ten: Influence Phenomena On Networks**
 - The linear threshold model and the Independent cascades model
- Empirical studies in information and behavior spreading
- Seeding strategies on how to maximize influence
- Cascades and community structure

- **Lesson Eleven: Other Dynamic Processes Of/On Networks**
 - Percolation, random failures, and targeted attacks on networks
 - Search on networks
 - Synchronization on networks
 - Coevolutionary networks

- **Lesson Twelve: Models of Static and Dynamic Networks**
 - Stochastic network models that generate power-law degree distributions
 - Optimization-based network models
 - Stochastic block models
 - Hierarchical Random Graphs

- **Lesson Thirteen: Statistical Analysis of Network Data**
 - Network sampling methods
 - Estimation of network metrics
 - Association networks
 - Network tomography

- **Lesson Fourteen: Machine Learning meets Network Science**
 - Node embeddings
 - Graph neural networks
 - Deep generative network models
 - Limitations and applications of graph neural networks

Course Summary:

<table>
<thead>
<tr>
<th>Date</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>Details</td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
</tr>
<tr>
<td>Wed Jan 13, 2021</td>
<td>🗓️ BlueJeans Meeting: Office hours for instructor (Constantine) (https://gatech.instructure.com/calendar?event_id=1620641&include_contexts=course_181718) 12:30pm to 1:30pm</td>
</tr>
<tr>
<td>Thu Jan 21, 2021</td>
<td>📌 Step 3: Enroll in the Piazza Forums to do: 11:59pm</td>
</tr>
<tr>
<td>Thu Jan 21, 2021</td>
<td>📌 Lesson-1: Quiz (graded) (https://gatech.instructure.com/courses/181718/assignments/673384) due by 11:59pm</td>
</tr>
<tr>
<td></td>
<td>📌 Step 4: Check Your Canvas Communication Settings to do: 11:59pm</td>
</tr>
<tr>
<td>Thu Feb 4, 2021</td>
<td>📌 Lesson-3: Quiz (graded) (https://gatech.instructure.com/courses/181718/assignments/673378) due by 11:59pm</td>
</tr>
<tr>
<td>Fri Feb 5, 2021</td>
<td>📌 Module One: Project (https://gatech.instructure.com/courses/181718/assignments/673398) due by 11:59pm</td>
</tr>
<tr>
<td>Thu Feb 11, 2021</td>
<td>📌 Lesson-4: Quiz (graded) (https://gatech.instructure.com/courses/181718/assignments/673388) due by 11:59pm</td>
</tr>
<tr>
<td>Thu Feb 18, 2021</td>
<td>📌 Lesson-5: Quiz (graded) (https://gatech.instructure.com/courses/181718/assignments/673382) due by 11:59pm</td>
</tr>
<tr>
<td>Thu Feb 25, 2021</td>
<td>📌 Lesson-6: Quiz (graded) (https://gatech.instructure.com/courses/181718/assignments/673392) due by 11:59pm</td>
</tr>
<tr>
<td>Fri Feb 26, 2021</td>
<td>📌 Module Two: Project (https://gatech.instructure.com/courses/181718/assignments/673402) due by 11:59pm</td>
</tr>
<tr>
<td>Thu Mar 4, 2021</td>
<td>📌 Lesson-7: Quiz (graded) (https://gatech.instructure.com/courses/181718/assignments/673374) due by 11:59pm</td>
</tr>
<tr>
<td>Thu Mar 11, 2021</td>
<td>📌 Lesson-8: Quiz (graded) (https://gatech.instructure.com/courses/181718/assignments/673368) due by 11:59pm</td>
</tr>
<tr>
<td>Date</td>
<td>Details</td>
</tr>
<tr>
<td>--------------------</td>
<td>--</td>
</tr>
<tr>
<td>Thu Mar 18, 2021</td>
<td>Lesson-9: Quiz (graded) Link</td>
</tr>
<tr>
<td>Fri Mar 19, 2021</td>
<td>Module Three: Project Link</td>
</tr>
<tr>
<td>Thu Mar 25, 2021</td>
<td>Lesson-10: Quiz (graded) Link</td>
</tr>
<tr>
<td>Thu Apr 1, 2021</td>
<td>Lesson-11: Quiz (graded) Link</td>
</tr>
<tr>
<td>Thu Apr 8, 2021</td>
<td>Lesson-12: Quiz (graded) Link</td>
</tr>
<tr>
<td>Fri Apr 9, 2021</td>
<td>Module Four: Project Link</td>
</tr>
<tr>
<td>Thu Apr 15, 2021</td>
<td>Lesson-13: Quiz (graded) Link</td>
</tr>
<tr>
<td>Thu Apr 22, 2021</td>
<td>Lesson-14: Quiz (graded) Link</td>
</tr>
<tr>
<td>Fri Apr 23, 2021</td>
<td>Module Five: Project Link</td>
</tr>
</tbody>
</table>