CS 6505 Course Syllabus

Instructors and Creators:

Professor Lance Fortnow and Professor H. Venkateswaran

Course Developer and Creator: Charlie Brubaker

- 1. Computability
 - a. Languages & Countability
 - b. Turing Machines
 - c. Models of Turing machines and computability
 - d. Church-Turing Thesis & Undecidability
 - e. Reducibility and other non-computable sets
 - f. Gödel Incompleteness Theorem
- 2. Complexity
 - a. The classes P and NP
 - b. Satisfiability and Cook-Levin
 - c. NP-Completeness Proofs
 - i. 3CNF-SAT
 - ii. Clique / Independent Set
 - iii. Vertex Cover
 - iv. Hamilton Cycle/Traveling Salesman
 - d. The P v NP problem and dealing with hardness
 - e. Space Complexity
- 3. Algorithms
 - a. FFT for polynomial multiplication
 - b. Dynamic Programming
 - i. Sequence Alignment
 - ii. Floyd-Warshall
 - c. Max-Flow/Min-cut
 - d. Bipartite Matching
 - e. Linear Programming
 - i. Basic Solutions
 - ii. Simplex Algorithm
 - f. Duality
 - i. Dual Forms
 - ii. MaxFlow/Mincut & Max-Matching/Vertex Cover Examples
 - g. Approximation Algorithms
 - i. Vertex Cover
 - ii. Metric TSP
 - h. Randomized Algorithms

- i. Karger's min-cut algorithmi. Beyond Single Core
- - i. Parallel and Quantum