

CS7280 Prerequisite test

Answering the following questions will tell you if you are ready to take the CS 7280 Network Science class. If you know how to solve the questions below or can do it with some revision of undergrad level of probability and linear algebra, then you are good to start.

Question 2	pts
This two-module system works if at least one module works. The probability that each module w is shown on the graph. The modules fail independently. What is the probability that the system works?	orks
0.95	
O.995	
○ 0.005	
○ 0.9975	
O.0025	

Question 3	1 pt
A batch of parts contains 100 parts from Supplier A and 200 parts from Supplier B. If 4 selected randomly, without replacement, what is the probability that they are all from	•
○ 0.9881	
0.0119	
O.9771	
○ 0.0229	

Question 4	1 pts
A batch of parts contains 100 parts from Supplier A and 200 parts from Supplier B. If 4 parts a selected randomly, with replacement, what is the probability that they are all from Supplier A?	
O.9877	
○ 0.0123	
○ 0.9771	
O.0229	

Question 5	1 pts
Suppose that the current measurements in a strip of wire are assumed to follow distribution with mean = 10 and variance = 4, what is the probability that a mea 13? (Hint. you can use a "z-table" for the standard normal distribution)	
O.06681	
○ 0.07982	
○ 0.07982 ○ 0.05586	

Question 6	1 pts
6. Find the following limit : $\lim_{x\to 0} \frac{\sin(x) + x}{2x^2 + x}$	
O 0	
○ 1/2	
○ 1/4	
○ 2	

Question 7	1 pts
Differentiate $\ln(x)$ with respect to x,	
$\bigcirc \frac{1}{10x}$	
$\bigcirc \frac{1}{x}$	
O 0	
O 1	

Question 8

1 pts

Integrate a^x with respect to x.

$$\bigcirc a^x + C$$

$$\bigcirc \ a^{x-1} \ + \ C$$

$$\bigcirc \quad rac{a^x}{\ln(a)} \ + \ C$$

$$\bigcirc \frac{a^x}{\ln(x)} + C$$

Question 9 1 pts

What is the functional form of the solution to the differential equation : $rac{dx}{dt} \ = \ 5x \ - \ 3$

$$\bigcirc \;\; x\left(t
ight) \,=\, Ce^{5t} \,+\, rac{3}{5}$$

$$\bigcirc x(t) = Ce^{5t}$$

$$\bigcirc x(t) = C \ln(5t) + \frac{3}{5}$$

$$\bigcirc x(t) = C \ln(5t)$$

Question 10 1 pts

Find the eigenvalues for the matrix :

O -1, 6

O 1, -6

O 2,3

O -2,-3

If matrix A has dimension 3x4 and matrix B has dimension 4x5, what are the dimensions of the matrix B^TA^T .
○ 3x4
○ 4x5
○ 3x5
○ 5x3
Question 12 1 pts
If a symmetric matrix has the following eigenvalue decomposition, $A=U^TYU$, the matrix A^n , can then be computed using :
$\bigcirc \ U^{Tn} \ Y^n \ U^n$
$\bigcirc U^T Y^n U$
$\bigcirc \ U \ Y^n \ U^T$
○ All of the above
Question 13 1 pts
Which of the following statements are TRUE :
○ The inverse of any given matrix A exists if the matrix is singular.
○ The inverse of any given matrix A exists if the matrix is square symmetric.
\bigcirc If A is mxn and n \leq m, then the maximum possible rank of the matrix is n.
○ The matrix A has an inverse if the determinant is non-negative."

1 pts

Question 11